博客
关于我
【skLearn 练习】随机森林回归填补缺失值
阅读量:325 次
发布时间:2019-03-04

本文共 3507 字,大约阅读时间需要 11 分钟。

随机森林回归填补缺失值

在现实数据中,缺失值是难以避免的问题。直接删除含有缺失值的样本虽然简单,但有时通过填补缺失值可以更好地利用数据,这在很多实际应用中显得尤为重要。以下将介绍如何利用 sklearn.impute.SimpleImputer 模块中的均值、常数值以及随机森林回归方法对波士顿房价数据集中的缺失值进行填补,并通过交叉验证评估不同方法的性能。

导入必要的库

import numpy as npimport pandas as pdfrom matplotlib import pyplot as pltfrom sklearn.datasets import load_bostonfrom sklearn.impute import SimpleImputerfrom sklearn.ensemble import RandomForestRegressorfrom sklearn.model_selection import cross_val_score

导入数据集

# 加载波士顿房价数据集boston = load_boston()x_full = boston.data  # 特征矩阵y_full = boston.target  # 标签n_samples, n_features = x_full.shape  # 数据样本数和特征数

构建缺失值

# 随机生成缺失值的位置rng = np.random.RandomState(0)missing_rate = 0.5n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))  # 3289# 随机选择行和列的索引missing_samples = rng.randint(0, n_samples, n_missing_samples)missing_features = rng.randint(0, n_features, n_missing_samples)# 创建缺失值矩阵x_missing = x_full.copy()x_missing[missing_samples, missing_features] = np.nanx_missing = pd.DataFrame(x_missing)

缺失值填补方法

1. 均值(Mean)填补

使用 SimpleImputer 的均值策略填补缺失值。

# 均值填补imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')x_missing_mean = imp_mean.fit_transform(x_missing)x_missing_mean = pd.DataFrame(x_missing_mean)

2. 常数(0)填补

使用常数策略填补缺失值,常数值为 0。

# 常数填补imp_0 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value=0)x_missing_0 = imp_0.fit_transform(x_missing)x_missing_0 = pd.DataFrame(x_missing_0)

3. 随机森林回归填补

随机森林回归是一种强大的填补方法,利用其他特征和标签预测缺失特征。

# 随机森林回归填补def impute_using_rfc(df, y_full):    # 找出缺失值最多的列    sort_columns_index = np.argsort(df.isnull().sum()).tolist()        for i in sort_columns_index:        # 构建新的特征矩阵和标签        df_train = df.iloc[:, df.columns != i].copy()        df_train = pd.concat([df_train, pd.DataFrame(y_full)], axis=1)                # 填补缺失值        df_0 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value=0).fit_transform(df_train)                # 提取训练集和测试集        ytrain = df_train[df_train.notnull().any(axis=1)]        ytest = df_train[df_train.isnull().any(axis=1)]                xtrain = df_0[ytrain.index, :]        xtest = df_0[ytest.index, :]                # 使用随机森林回归填补        rfc = RandomForestRegressor(n_estimators=100, random_state=0).fit(xtrain, ytrain)        y_predict = rfc.predict(xtest)                # 将预测值填入原始数据        df.loc[df.iloc[:, i].isnull(), i] = y_predict        return df# 对缺失值进行随机森林填补x_missing_reg = x_missing.copy()x_missing_reg = impute_using_rfc(x_missing_reg, y_full)

评估填补效果

通过交叉验证计算均方误差(MSE)评分。

X = [x_full, x_missing_mean, x_missing_0, x_missing_reg]mse = []for x in X:    estimator = RandomForestRegressor(n_estimators=100, random_state=0)    scores = cross_val_score(estimator, x, y_full, scoring='neg_mean_squared_error', cv=5).mean()    mse.append(scores * -1)# MSE评分结果mse = [21.6286, 43.2074, 47.4055, 17.5528]

评估结果可视化

plt.figure(figsize=(12, 8))colors = ['r', 'g', 'b', 'orange']x_labels = ["x_full", "x_missing_mean", "x_missing_0", "x_missing_reg"]ax = plt.subplot(111)for i in range(len(mse)):    ax.barh(i, mse[i], color=colors[i], alpha=0.6, align='center')    ax.set_title("波士顿房价数据集缺失值填补方法对比", color='white')    ax.set_xlim(left=np.min(mse)*0.9, right=np.max(mse)*1.1)    ax.set_yticks(range(len(mse)))    ax.set_xlabel("MSE", color='white')    ax.set_yticklabels(x_labels)    plt.tick_params(axis='x', colors='white')    plt.tick_params(axis='y', colors='white')plt.show()

结论

通过对比均值填补、常数填补和随机森林回归填补方法的结果,可以看出随机森林回归填补方法在波士顿房价数据集上表现最为出色,其均方误差评分仅为 17.55,显著优于其他方法。因此,在面对缺失值问题时,随机森林回归填补是一种更为优越的选择。

转载地址:http://lfeq.baihongyu.com/

你可能感兴趣的文章
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.7 Parameters vs Hyperparameters
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
nnU-Net 终极指南
查看>>